INHIBITION OF PAIN PROCESSING BY TRANSCUTANEOUS VAGUS NERVE STIMULATION

Jens Ellrich, MD, PhD, Volker Busch, MD, Peter Eichhammer, MD PhD
1Aalborg University, Department of Psychiatry, Aalborg, Denmark,
2University of Regensburg, Regensburg, Germany

Introduction: Stimulation of vagus nerve afferents has been shown to modulate nociception and pain processing in animal and human experimental studies (1, 2). Due to the invasive procedure of vagus nerve stimulation, studies have been limited to patients mainly suffering from both drug-resistant epilepsy and pain (2). Recently, a medical device has been developed that allows for transcutaneous electrical stimulation of the auricular branch of the vagus nerve (t-VNS). The present study addressed the hypothesis that t-VNS alters pain processing.

Materials and Methods: In this randomized, controlled study somatosensory processing was assessed by the quantitative sensory testing (QST) protocol with mechanical and thermal stimulation in 48 healthy volunteers (24 female, 24 male, 23.3 ± 2.1 years). Each volunteer participated in two experimental sessions with or without (control) active t-VNS on different days in randomized order. In one session QST was performed before and during t-VNS on both hands. After baseline QST (approx. 45 min), t-VNS at the left ear was started with a non-painful stimulus intensity using rectangular pulses (250 microseconds, 25 Hz; 70 min).

Results: A repeated measures ANOVA showed significant interactions between stimulation and side for the parameters mechanical pain sensitivity (MPS) and pressure pain threshold (PPT). MPS of the left hand was lower under t-VNS as compared to control and the right side (p < 0.05). PPT was higher under t-VNS as compared to control and the right side (p < 0.05). Sustained application of painful heat for 5 min induced increased perception ratings under baseline conditions. Under t-VNS pain rating increase was significantly reduced as compared to control (p < 0.001). All other QST parameters remained statistically unchanged.

Discussion: The results indicate reduced sensitivity to mechanically evoked pain on the ipsilateral hand. Besides flattening of the stimulusresponse function for superficial mechanical pain (MPS), increased PPT reveals suppression of deep muscle pain under t-VNS. Furthermore, temporal summation of noxious heat seems to be inhibited with t-VNS.

Conclusion: This study shows alteration of mechanical and thermal pain processing in healthy volunteers. Future studies in chronic pain patients will address the potential analgesic effects of t-VNS.

Keywords: pain, nociception, vagus nerve, electrical

Acknowledgements: This experimental study was sponsored by Cerbomed GmbH (www.cerbomed.com).

Conflict of Interest: Jens Ellrich is an employee of Aalborg University and cerbomed.

REFERENCES
Inhibition of pain processing by transcutaneous vagus nerve stimulation

Jens Ellrich1,2, Volker Busch3, Peter Eichhammer3

(1) Medical Department, Cerbomed GmbH, Henkestrasse 91, D-91052 Erlangen, Germany
(2) Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 702, DK-9220 Aalborg, Denmark
(3) Center for Pain and affective Disorders, Department of Psychiatry, University of Regensburg, Universitätsstrasse 84, D-93059 Regensburg, Germany

1 Introduction

Stimulation of vagus nerve afferents has been shown to modulate nociception and pain processing in animal and human experimental studies (1,2). Due to the invasive procedure of vagus nerve stimulation (VNS), the vast majority of clinical studies investigated patients who primarily suffered from epilepsy or depression with concomitant pain diseases (3-5). However, in one case series VNS was implanted in order to treat chronic headache showing significant improvement in four out of six patients (6). A recently developed medical device allows for transcutaneous electrical stimulation of the auricular branch of the vagus nerve (t-VNS). The present study addresses the hypothesis that t-VNS alters pain processing.

Methods

- Randomized, controlled, crossover study
- 48 healthy volunteers: 24 Q, 24 F, 23.3 ± 2.1 years
- 2 randomized sessions with active or sham t-VNS on different days
- Conditioning stimulation: Transcutaneous vagus nerve stimulation, t-VNS
 - applied to skin afferents of the auricular branch of the vagus nerve in left ear's concha
 - electrical, rectangular pulses (250 μs duration)
 - 25 Hz stimulation frequency
 - intensity above detection threshold and below pain threshold evoking tingling sensations

Test stimulation: Quantitative Sensory Testing, QST on left and right hand dorsum

- CDT, WDT: Cold, Warm Detection Threshold
- TSL: Thermal Sensory Lumen
- PHS: Paradoxical Heat Sensations
- CPT, HPT: Cold, Heat Pain Threshold

MDT: Mechanical Detection Threshold
MPT: Mechanical Pain Threshold
MPS: Mechanical Pain Sensitivity
ALL: Allodynia

WUR: Windup Ratio
VDT: Vibration Detection Threshold
PPT: Pressure Pain Threshold

Tonic Heat Pain (THP):
Contact heat pulse with a saw tooth shape started from 0.5°C below individual HPT and increased to 0.5°C above HPT with 25 pulses per min. During the stimulation period of 5 min volunteers rated pain perception on a numerical rating scale (0 to 10) every 20 seconds.

Study design

- Baseline Stimulation
 - active t-VNS (25 Hz, 250 μs, tingling)
 - sham t-VNS (attached, no current)

- QST
- left hand right hand

2 Results

Ipsilateral PPT increased under active t-VNS.

Ipsilateral MPS decreased under active t-VNS.

Reduced THP under t-VNS.

Non-painful QST parameters remained unchanged.

- Parameter: Stimulation Interaction Stimulation*Side
 - CDT: F=0.01, n.s. F=0.05, n.s.
 - WDT: F=0.05, n.s. F=0.10, n.s.
 - TSL: F=1.71, n.s. F=0.03, n.s.
 - MDT: F=1.96, n.s. F=0.75, n.s.

2-way RM ANOVA, n.s.: not significant

4 Summary & Conclusions

- Invasive VNS in rats inhibits sensory neurons in the brainstem and pain-related behavior.
- Fos-immunoreactivity in the brainstem decreased on the ipsilateral side.
- Invasive VNS in epilepsy patients inhibits wind-up and tonic pressure pain. Spinal or even supraspinal mechanisms are suggested to be involved.
- t-VNS inhibits deep muscle pain processing on the ipsilateral side (PPT).
- t-VNS flattens the stimulus-response function of pinprick pain (MPS).
- t-VNS reduces temporal summation of noxious heat (THP).
- t-VNS affects pain processing but does not interfere with innocuous somatosensory processing.
- t-VNS is suggested to activate CNS mechanisms of pain modulation.
- Future studies will address potential analgesic effects in patients.

Corresponding author: Professor Dr. med. Jens Ellrich, MD
Medical Department, Cerbomed GmbH, Henkestrasse 91, D-91052 Erlangen
e-mail: jens.ellrich@cerbomed.com
Department of Health Science and Technology, Medical Faculty, Aalborg University, Fredrik Bajers Vej 702, DK-9220 Aalborg
e-mail: jellrich@fht.aau.dk